Questions are for both separate science and combined science students unless indicated in the question

The diagram shows the electronic configurations of six different atoms. В C D Ε (a) You may use the Periodic Table on page 2 to help you answer this question. Answer each part by writing one of the letters A, B, C, D, E or F in the box provided. You may use each letter once, more than once or not at all. Give the letter that represents an atom (6) (i) of a noble gas (ii) that contains three protons (iii) of phosphorus (iv) of an element in Group 4 of the Periodic Table (v) of an element in Period 3 of the Periodic Table (vi) with a full outer shell of electrons (b) Atoms of A and D combine to form a compound containing covalent bonds. (i) Complete the sentence to describe a covalent bond. (2) A covalent bond is the electrostatic attraction between a pair of _______ and the of two atoms.

		(Total	for Question 1 = 9 marks)	
			(1)	
(11)	the compound formed be	3	e most likely formula of	
(ii)	Suggest, with reference to	electronic configurations, the	e most likely formula of	

2	Thi	is qı	uestion is	about hydrog	gen (H ₂) an	d water.						
	(a)	Ну	drogen is	a gas at roon	n temperat	ture. It exis	ts as sin	nple mole	cules.			
		(i)		ot and cross n molecule.	diagram to	show the a	arrange	ment of tl	ne elect	rons in	a (1)	
		(ii)	Explain v	vhy hydroger	n has a ver	y low boilin	g point				(2)	
	(b)	Th	e symbols	for the three	isotopes o	of hydroger ² H		³H				
		(i)	State wh	at is meant b	y the term	isotopes.					(2)	
		(ii)		e the table to he three isoto			protons	s, neutron	s and el	ectrons	s in (3)	
							Is	sotope				
						¹H		²H	3	1		
			nu	mber of prote	ons							
			nu	mber of neut	rons							
			nu	mber of elect	rons							

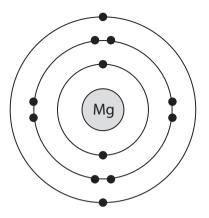
(c)	Wh	nen hydrogen burns in oxygen, heat energy is transferred to the surroundings.	
	(i)	State the name given to a reaction in which heat energy is transferred to the surroundings.	
			(1)
	(ii)	Write a chemical equation to represent the reaction that takes place when hydrogen burns in oxygen.	
		nydrogen barns in oxygen.	(2)
	(iii)	Describe a chemical test to show that the product is water.	(2)
			(2)
	(iv)	Describe a physical test to show that the product is pure water.	
	(IV)	Describe a physical test to show that the product is pure water.	(2)
		(Total for Question 2 = 15 ma	rks)

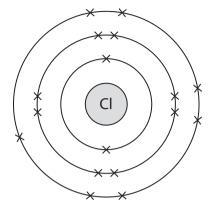
- **3** This question is about bonding, structures and properties.
 - (a) The box gives four types of structure.

_			
giant covalent	giant ionic	giant metallic	simple molecular
3	3	3	

The table shows some properties of four substances, A, B, C and D.

Complete the table by giving the correct type of structure for each substance.


You may use each structure once, more than once or not at all. (separate only)


(4)

Substance	Electrical c	onductivity	Melting	Time of students
Substance	of the solid	of the liquid	point	Type of structure
А	poor	poor	low	
В	poor	poor	high	
С	good	good	high	
D	poor	good	high	

(b) Magnesium chloride (MgCl₂) is an ionic compound.

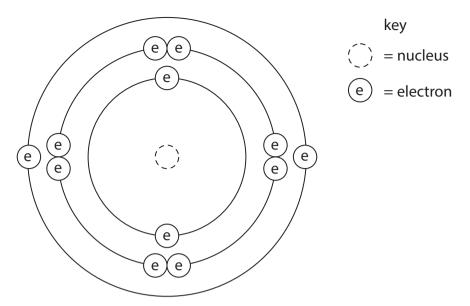
The diagram shows the electronic configurations of atoms of magnesium and chlorine.

(i) Describe how magnesium atoms and chlorine atoms form magnesium ions and chloride ions.

(3)

(i	-	Draw a				the el	lectro	nic co	onfigu	uratio	ns o	f eacl	n of t	he io	ns
		in mag	nesiur	n chlo	oride.										

Show the charge on each ion.


(3)

	(Tot	al for Question 3 = 1	7 marks)
	/- -	-160	7 I
,			(2)
(ii) Explain why indium is mallea	ıble. (separate only)		
(i) Describe the structure and be	onang malam. (Se)	oniuto omy,	(3)
(i) Describe the structure and bo		narate only)	
(d) Indium is a metal in Group 3 of tl	ha Pariodic Tabla		(2)
			(2)
Ο	C	0	
outer electrons in a molecule of o	carbon dioxide.		

(c) A molecule of carbon dioxide contains double covalent bonds.

Complete the diagram, using dots and crosses, to show the arrangement of the

4 The diagram shows the electronic configuration of an atom of element X.

(a) (i) How many protons does the nucleus of the atom contain?

(1)

(ii) Which group of the Periodic Table contains element X?

Give a reason for your choice.

(2)

(iii) Give the formula of the ion formed by element X in its compounds.

(1)

(b) Element X has three isotopes.

The table gives the mass number of each isotope and its percentage abundance in a sample of element X.

Mass number	Percentage abundance (%)
24	79.0
25	10.0
26	11.0

Calculate the relative atomic mass (A_r) of element X.

Give your answer to one decimal place.

(3)

relative atomic mass of X =

(Total for Question 4 = 7 marks)

	3	5	6	11	16	
Each n	umber may	be used once,	, more than o	nce or not at a	II.	
(i) The	e atomic nur	mber of boron	is			
(ii) The	e mass numb	per of boron is	5			
(iii) Thi	s atom of bo	oron contains		protons.		
(iv) Thi	s atom of bo	oron contains		neutrons.		
(v) Thi	s atom of bo	oron contains		electrons.		

5 Boron is an element in Group 3 of the Periodic Table.

	fewer	m e	the same number of	
L				
Each v	vord or phrase may	be used once, more	e than once or not at all.	
(i) Co	mpared to an aton	n of boron, an atom	of aluminium has	
			protons.	
				(1)
(ii) Co	mpared to an aton	n of boron, an atom	of aluminium has	
			neutrons.	
				(4)
				(1)
(iii) Co	mpared to an aton	n of boron, an atom	of aluminium has	(1)
(iii) Co 	•		of aluminium has electrons in its outer shell.	(1)
(iii) Co 	•			(1)
				(1)
The el	ectronic configurat			
The el	ectronic configurat			(1)
The el	ectronic configurat			(1)
The el	ectronic configurat			(1)